Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns
نویسندگان
چکیده
Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.
منابع مشابه
Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane
Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملCell Deformation Modeling Under External Force Using Artificial Neural Network
Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...
متن کاملAgonist mobility in supported bilayers affects Fas mediated death response
Introduction Extrinsic apoptosis is initiated by the heterologous binding and clustering of the single-pass transmembrane proteins, Fas ligand, expressed by natural killer lymphocytes, and its cognate receptor Fas (CD95) expressed at the surface of a target cell. While the Fas mediated death response was widely studied using soluble inducers, the mobility constraints of both receptor and ligand...
متن کاملInfluenza Viral Membrane Deformation due to Re- folding of HA-protein: Two-dimensionalModel and Analysis
In this paper we study influenza viral membrane deformation related to the refolding of Hemagglutinin (HA) protein. The focus of the paper is to understand membrane deformation and budding due to experimentally observed linear HA-protein clusters, which have not been mathematically studied before. The viral membrane is modeled as a two dimensional incompressible lipid bilayer with bending rigid...
متن کامل